

MET 4501 LEAH GINSBERG, PH.D.

TYPES OF GEARS

Image source: https://www.tec-science.com/category/mechanical-power-transmission/gear-types/

GEARS IN MOTION

PRIME GEAR SETS

Image source: https://engineering.stackexchange.com/questions/11394/why-are-spur-gear-ratios-not-always-whole-numbers-in-practice

NOMENCLATURE OF SPUR-GEAR TEETH

Fig. 13–7

NOMENCLATURE OF SPUR-GEAR TEETH

Fig. 13–5

TOOTH SIZES IN GENERAL USE

Diametral Pitch P (teeth/in)				
Coarse	$2.2^{\pm}.2^{\pm}.3.4.6.8.10.12.16$			

Fine 20, 24, 32, 40, 48, 64, 80, 96, 120, 150, 200

Module m (mm/tooth)				
Preferred 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50				
Next Choice	1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 22, 28, 36, 45			

Table 13–2

STANDARDIZED TOOTH SYSTEMS (SPUR GEARS)

Tooth System	Pressure Angle ϕ , deg	Addendum a	Dedendum b
Full depth	20	1/ <i>P</i> or <i>m</i>	1.25/ <i>P</i> or 1.25 <i>m</i> 1.35/ <i>P</i> or 1.35 <i>m</i>
	$22\frac{1}{2}$	1/ <i>P</i> or <i>m</i>	1.25/P or 1.25m 1.35/P or 1.35m
	25	1/ <i>P</i> or <i>m</i>	1.25/ <i>P</i> or 1.25 <i>m</i> 1.35/ <i>P</i> or 1.35 <i>m</i>
Stub	20	0.8/P or 0.8m	1/ <i>P</i> or <i>m</i>

Table 13–1

INVOLUTES

Image source: https://mathworld.wolfram.com/Involute.html

INVOLUTE GEAR TOOTH PROFILES

INVOLUTE GEAR TOOTH PROFILES

Fig. 13–8

CONTACT RATIO

Fig. 13–11

INTERFERENCE

Image source: https://www.quora.com/What-is-undercutting-in-gear

